SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WAKA:ref ;pers:(Liu Johan 1960);pers:(Lu Xiuzhen)"

Search: WAKA:ref > Liu Johan 1960 > Lu Xiuzhen

  • Result 1-10 of 34
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Bao, Jie, et al. (author)
  • Synthesis and Applications of Two-Dimensional Hexagonal Boron Nitride in Electronics Manufacturing
  • 2016
  • In: Electronic Materials Letters. - : Springer Science and Business Media LLC. - 1738-8090 .- 2093-6788. ; 12:1, s. 1-16
  • Research review (peer-reviewed)abstract
    • In similarity to graphene, two-dimensional (2D) hexagonal boron nitride (hBN) has some remarkable properties, such as mechanical robustness and high thermal conductivity. In addition, hBN has superb chemical stability and it is electrically insulating. 2D hBN has been considered a promising material for many applications in electronics, including 2D hBN based substrates, gate dielectrics for graphene transistors and interconnects, and electronic packaging insulators. This paper reviews the synthesis, transfer and fabrication of 2D hBN films, hBN based composites and hBN-based van der Waals heterostructures. In particular, this review focuses on applications in manufacturing electronic devices where the insulating and thermal properties of hBN can potentially be exploited. 2D hBN and related composite systems are emerging as new and industrially important materials, which could address many challenges in future complex electronics devices and systems.
  •  
3.
  • Gong, Xinjian, et al. (author)
  • Fabrication and Characterization of Graphene/polyimide Composite Film
  • 2021
  • In: 2021 23rd European Microelectronics and Packaging Conference and Exhibition, EMPC 2021.
  • Conference paper (peer-reviewed)abstract
    • A flexible graphene and polyimide composite film was designed and fabricated in this study. A polyimide solution was used as an adhesive layer to connect graphene film and polyimide film by hot-pressing. Laser flash thermal analysis method was carried out to evaluate the thermal diffusion coefficient of different thicknesses of the fabricated films at various temperatures. Bending test was carried out to evaluate the stability and reliability of the composite film. Scanning electron microscopy was applied to characterize the cross-section of the composite film before and after the peel test. IR imaging was employed to compare the heat diffusion of the composite film and traditional flexible copper clad laminate. The results show that the composite film has significantly better thermal diffusion capacity than traditional flexible copper clad laminate.
  •  
4.
  • Jiang, Ziwei, et al. (author)
  • Characterterization of multi-scale nanosilver paste reinforced with SIC particles
  • 2020
  • In: China Semiconductor Technology International Conference 2020, CSTIC 2020.
  • Conference paper (peer-reviewed)abstract
    • Nanosilver paste with high operation temperature and low sintering temperature has attracted more and more attention for its promising application in high power devices. In this paper, the thermal properties of multi-scale nanosilver paste composed of nanometer and micrometer silver particles, and Ag-coated SiC particles were investigated. The thermal conductivity of multi-scale nanosilver paste increases with the increasing amount of SiC particles with Ag coating. The maximum value of Vickers hardness for multi-scale nanosilver paste with 0.5 wt.% Ag-coated SiC particles were 24.
  •  
5.
  • Lai, Huaxiang, et al. (author)
  • Effects of BN and SiC nanoparticles on properties of conductive adhesive
  • 2010
  • In: Proceedings - 2010 11th International Conference on Electronic Packaging Technology and High Density Packaging, ICEPT-HDP 2010; Xi'an; 16 August 2010 through 19 August 2010. - 9781424481422 ; :Article number 5582434, s. 235-239
  • Conference paper (peer-reviewed)abstract
    • Isotropic conductive adhesives (ICAs) are a type of interconnect material used more and more widely in computer, robot, mobile phone, LED and so on. Compared with traditional solders, isotropic conductive adhesives have better working plasticity, creep resistance and heat resistance. In particular, isotropic conductive adhesives are more responsive in high density packaging than solder, which determines the dominance of ICAs in high density packaging in the future. In order to improve the thermal conductivity of ICA with acceptable electrical conductivity, Ag flakers, BN and SiC nanoparticles were added into the matrix. The content of silver flakes was 75wt%, and the content of nanoparticles (BN or SiC) in the isotropic conductive adhesives were 0wt%, 0.5wt%, 1.5wt%, 2.5wt%, 3wt%, 5wt% in weight. The conductive adhesives were coated on the PCBs with stencil printing and fifty SR1206 chip components were mounted on a PCB using conductive adhesive. All samples were cured at 150°for 1h. Further research into the reliability of the above isotropic conductive adhesives after temperature & humidity and thermal-cycling was carried out to analyze the effects of BN and SiC nanoparticals on the properties of ICA. The condition of the temperature & humidity test was 85 ° /85%RH, 500h. The thermal-cycling test was -40 °∼125°, 500 cycles and the soaking time and ramping rate were 19min and ±15°/min. Changes to electrical resistance were used to estimate the reliability of the isotropic conductive adhesives in this study. The microstructure of the failure samples was observed using a Scanning Electron Microscope (SEM). The water absorption of all ICAs is the same after 94h temperature and humidity aging and the rate of water absorption is also the same during the aging. The ICA with 3% boron nitride nanoparticles and 75% micron silver flakes shows the best temperature and humidity reliability, with the fewest cracks on the interface between ICA and component. After 500h thermal cycling aging, the resistance reduces in the first 100h and maintains in a certain value after 332h cycled thermal. The samples have no wide cracks but a few small ones on the interface. © 2010 IEEE.
  •  
6.
  •  
7.
  •  
8.
  • Long, Xu, et al. (author)
  • Finite Element Analysis to the Constitutive Behavior of Sintered Silver Nanoparticles Under Nanoindentation
  • 2018
  • In: International Journal of Applied Mechanics. - 1758-8251 .- 1758-826X. ; 10:10
  • Journal article (peer-reviewed)abstract
    • Finite element (FE) simulation is adopted as a fundamental tool to evaluate the mechanical reliability of packaging structures for electronic devices. Nevertheless, the determination of mechanical properties of sintered silver nanoparticles (AgNP) remains challenging as the traditional tensile test is difficult to be performed at a limited size. In the current study, spherical nanoindentation is utilized to measure the applied load-penetration depth responses of sintered AgNP reinforced by SiC microparticles at various weight ratios (0.0, 0.5, 1.0 and 1.5 wt.%). To describe the elasto-plastic behavior of this heterogeneous material, FE analysis is performed to simulate the indentation behavior and determine the parameters in the modified power-law model by fitting the average applied load-penetration depth responses. To overcome the uniqueness problem, the Young's modulus is directly determined by continuous stiffness measurement technique and the proposed constitutive model can provide a reasonably accurate mechanical estimation of sintered AgNP. The effect of SiC content on sintered AgNP is discussed by correlating the morphology observed by scanning electron microscope (SEM) and the constitutive parameters obtained from the FE simulations.
  •  
9.
  • Long, Xu, et al. (author)
  • Mechanical behaviour of sintered silver nanoparticles reinforced by SiC microparticles
  • 2019
  • In: Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing. - : Elsevier BV. - 0921-5093. ; 744, s. 406-414
  • Journal article (peer-reviewed)abstract
    • SiC microparticles with various weight ratios (0.0, 0.5, 1.0 and 1.5 wt%) are incorporated into sintered silver nanoparticles (AgNP) as one of the promising packaging materials for high-power electronic devices. Mechanical properties and constitutive behaviour of sintered AgNP reinforced by SiC microparticles are investigated based on nanoindentation experiment and analytical approach. Nanoindentations were performed in the manner of continuous stiffness measurement for a maximum penetration depth of 2000 nm at a strain rate of 0.05 s−1. Particularly, a Berkovich indenter is utilized to evaluate the values of Young's modulus and hardness, and a spherical indenter is utilized to describe the constitutive behaviour. For sintered AgNP with 0.5 wt% SiC, the morphology exhibits uniformly compact microstructures to enable optimizing the heat conductivity, the yield strength and hardening capacity of sintered AgNP material is enhanced. To describe the constitutive behaviour, an analytical approach is proposed to simulate the indentation behaviour. The parameters in the modified power-law model are determined by fitting the average indentation responses. The developed correlation between microstructure and macroscopic properties facilitates the design of AgNP paste morphology and improves the mechanical properties of sintered AgNP in electronics packaging.
  •  
10.
  • Lu, Xiuzhen, et al. (author)
  • Enhanced Mechanical and Thermal Properties of Ag Joints Sintered by Spark Plasma Sintering
  • 2022
  • In: Journal of Electronic Materials. - : Springer Science and Business Media LLC. - 1543-186X .- 0361-5235. ; 51:11, s. 6310-6319
  • Journal article (peer-reviewed)abstract
    • Nano-silver paste has been considered to be one of the most promising materials for interconnects of semiconductor devices operating at high temperature. However, its application is limited by conventional sintering methods due to the long dwell time. In this paper, a spark plasma sintering (SPS) technique with a very short sintering time of no more than 5 min was explored for the sintering of nano-silver paste. The effects of sintering conditions including pretreatment time, sintering temperature, dwell time and applied pressure on shear strength and thermal conductivity of the sintered Ag joints were investigated. The shear strength of sintered Ag joints increased as the sintering temperature and applied pressure increased. Robust sintered Ag joints with an average shear strength of 40.18 MPa were obtained by sintering at 300 degrees C for 5 min under a pressure of 3 MPa. The thermal properties were improved by pretreating the nano-silver paste for a shorter time. Thermal conductivity of 41.50 W m(-1) K-1 is obtained for samples pretreated for 25 min and sintered at 250 degrees C for 5 min.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 34

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view